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Remarques sur la t h h r i e  de la mesure et  ses relations avec la psychologie 

Une theorie de la mesure fondamentale consiste en une ordination d'entitBs 
selon l'attribut h mesurer, une structure mathematique complementaire appliquee 
A l'ensemble de ces entites, un ensemble d'axiomes (ou de lois empiriques) qui 
relie l'ordre h la structure, une representation numBrique (isomorphisme) du 
systeme empirique, qui est construite simplement par un decompte et un calcul de 
limites; enfin un theoreme d'unicite qui decrit les relations entre les differentes 
representations de m&me type. Les deux exemples decrits ici en detail constituent 
des mesures extensives et conjointes. Tous deux impliquent l'additivitk, le premier 
sur une operation qui combine deux entitBs pour en former une troisi&me, le 
second sur les coordonnees des entitks. Si les deux theories s'appliquent au  m&me 
ensemble d'entites, comme c'est souvent vrai en physique classique et parfois 
peut-&tre en psychologie, alors un axiome qualitatif supplementaire mene A 
une relation tr&s simple entre les deux systemes numhriques. On compare la cons- 
truction d'kchelles additives sur les coordonnBes avec les dpreuves d'absence 
d'interaction dans l'analyse de la variance. Entre autres choses, ceci implique une 
interference entre des conditions statistiques particulieres, h savoir les tests des 
hypotheses et l'unicit6 des Bchelles de mesure. La position que l'on souhaite 
adopter est que toute transformation monotone croissante - en particulier celles 
que donne une normalite (approchke) des distributions - puisse &tre appliqu6e 
aux mesures pourvu que la question posBe ne soit pas relative h la nature des 
Bchelles. P a r  exemple : deux Bchantillons sont-ils tirBs de la meme distribution ? 
Toutefois, quand la question concerne l'kchelle, c'est-A-dire : y a-t-il une Bchelle 
qui soit (approximativement) additive sur les coordonnBes ? alors seules les 
transformations qui sont admissibles h 11int6rieur de la theorie de la mesure 
peuvent Btre utilisees sans modifier la question. En gknBral, ceci signifie que les 
hypotheses d'6quinormalitB de la statistique classique ne peuvent Btre satisfaites 
quand la thBorie de la mesure est suffisamment forte pour fournir une Bchelle 
d'intervalle ou une Bchelle mbtrique. 

(1) This work was supported in part by National Science Foundation grant 
NSF GB - 1462 to the University of Pennsylvania. 



ABSTRACT 

A theory of fundamental measurement consists of a n  ordering of entities 
according to the attribute to he measured; some further mathematical structure 
over the set of these entities; a set of axioms (or empirical laws) that interrelates 
the ordering and the structure; a numerical representation (isomorphism) of the 
empirical system which is constructed just by counting and computing limits; 
and a uniqueness theorem that describes the relations among different represen- 
tations of the same type. The two examples described in some detail are extensive 
and conjoint measurement. Both involve additivity - the former over an oper- 
ation of combining two entities to form a third, and the latter over the coor- 
dinates of the entities. When both theories apply to the same set of entities, as  
is often true in classical physics and occasionally may be in psychology, then an 
added qualitative axiom leads to a very simple relation between the two numer- 
ical systems. The construction of scales that are additive over coordinates is 
compared with analysis-of-variance tests for no interaction. Among other things, 
this involves the interplay between particular statistical statements, e.g, tests 
of hypotheses, and the uniqueness of the scales of measurement. The position 
advocated is that any monotonic increasing transformation - in particular, those 
that lead to (approximate) normality of distributions - may be applied to the 
measurements provided that the question asked is not about the nature of the 
scale. An example is whether two samples were drawn from the same distribution. 
However, when the question concerns the scale - e.g., is there a scale that is 
(approximately) additive over coordinates ? - then only those transformations 
that are admissible within the measurement theory may be used without alter- 
ing the question. In general, this means that the equi-normality assumptions of 
classical statistics cannot be satisfied when the measurement theory is suffi- 
ciently strong to lead to interval or ratio scales. 

1. Introduction 

As with many basic truths, the one to the effect that science depends 
crucially upon our ability to measure is elusive, easily misunderstood, 
and continually subject to amplification and reinterpretation. And so 
i t  is not surprising that as the behavioral sciences have become more 
sophisticated they - and, in particular, psychology - have devoted a 
portion of their literature and some of their better mathematical talent 
to an examination of what this truth may mean for them and how 
to measure their own basic variables. These analyses may prove to be 
one of the lasting contributions of contemporary behavioral science to, 
a t  the very least, the philosophy of science. Although this work has just 
begun to penetrate philosophical circles - there are only a few signs 
of i t  in their journals, let alone in more discursive essays and text- 
books - nonetheless i t  is quite clear that we understand some aspects of 
fundamental measurement better than did physicists, such as Campbell 



(1920, 1928), or  philosophers, for example Cohen and Nagel (1934)) 
who wrote a generation ago. 

Less clear is  the extent to which these studies eventually may 
contribute directly to the behavioral sciences as  such. A t  least two 
reasons underlie this uncertainty. For one, too few experimental studies 
have been completed for us to know how satisfactory the new theories 
are. For another, even if we had a theory of measurement that provided 
a reasonably satisfactory description of a psychological attribute, we 
do not have a s  yet suitable techniques and equipment to conduct 
routine measurements in the way physicists do regularly. It is rare, 
indeed, for a physicist to measure length or mass by direct appeal to a 
theory of fundamental measurement; rather, sizable portions of the 
theoretical superstructure of physics are used to devise alternative 
and vastly more convenient ways to measure these and other quantities. 
Practical measurement often rests upon highly refined theory and 
equipment whose development has, quite literally, taken decades and 
sometimes centuries of work. If the parallel is correct, then even were 
an adequate behavioral theory of measurement available - and I am 
not prepared to argue that any is  - almost surely we do not have the 
superstructure of psychological theory needed to evolve a technology 
which could provide us with clever, rapid, and accurate means of meas- 
uring basic psychological quantities. 

That being so, I can only assume that some interest attaches to our 
increased understanding of the nature of measurement even though i t  
may not help much in actual everyday measurement. My comments on 
our understanding fall into three parts. First,  just what do we mean by 
fundamental measurement and in what ways do our current views differ 
from the earlier ones ? (Secs. 2, 3, and 4). Second, what can be said 
about the formal structure of substantive theories, i.e., ones that 
establish relations among measures of several variables, when some of 
them are measured both physically and psychologically ? (Sec.15). Third, 
what, if any, colistraints do theories of measurement impose on our 
procedures of inference - especially, on our statistical procedures ? 
(Secs. 6 and 7). 

2. The Nature of Fundamental Measurement 

By fundamental numerical measurement I mean an  assignment of 
numbers to objects or events and an  assignment of numerical relations 
to qualitative relations among these objects or events such that (a) one 
of the qualitative relations unambiguously orders the objects or  events 



according to the attribute one wishes to measure, and (b) the numerical 
relations reflect (are isomorphic to) the structure of the qualitative 
relations. To illustrate (a), if we wish to measure the attribute mass, 
then i t  is assumed that  some unambiguous qualitative observation, such 
as deciding which pan of a two-pan balance drops when objects are 
placed on both pans, permits us to identify which of any pair of objects 
has the greater mass. If loudness is the attribute, then i t  is assumed 
that  a subject's response as to which sound is louder can be discrimi- 
nated unambiguously by the experimenter and that it identifies which 
of a pair of sounds is louder for that  subject. As we shall see, addi- 
tional qualitative relations sometimes exist among the entities to be 
measured, but an ordering according to the attribute of interest must 
always be present in a theory of measurement. 

By "the structure of the qualitative relations" I mean the network 
of empirical laws that these relations are assumed to satisfy. I n  the 
mathematical development, such postulates are usually called "axioms" 
rather than "laws," but we must not lose sight of the fact that  a theory 
of measurement possesses empirical interest only to the extent that  i t s  
axioms are (approximately) true empirical laws - admittedly, of a 
fairly low level of abstraction. Once this structure is stated, the experi- 
mentalist and theorist follow different routes. The latter accepts the 
structure as axiomatic and investigates its properties, usually by 
constructing a numerical system that  is isomorphic to the qualitative 
system; such a result is known as a representation theorem. The expe- 
rimentalist, however, is concerned with the empirical adequacy of 
the alleged laws; this involves direct experimental tests. Examples 
exist where the representation theorem has been used in an attempt to  
evaluate a theory, but direct tests of the axioms are usually more satis- 
factory and are more liliely to localize the defects of the theory. 

To be called a theory of fundamental measurement, no numbers 
may enter into the empirical system; nevertheless, the representation 
theorem provides a numerical assignment to the elements being mea- 
sured. This is possible only because we assume in the proof of the 
theorem that  the "measurer" is able to count the number of elements 
in any finite set. With that implicit assumption, certain limiting 
processes are carried out which assign real numbers, not in general just 
integers or rational numbers, to the elements. Of course, in practice 
such an idealization breaks down for very large sets, thereby placing a 
bound on the precision of measurement. This is not, however, a parti- 
cularly significant limitation since experimental imperfections embodied 
in the qualitative data usually limit the precision even more. 



3. Extensive Measurement 

I n  most satisfactory measurement systems, some additional struc- 
ture is  provided beyond the ordering of the attribute of interest. 
Classical extensive measurement, which is  a model for mass, length, and 
other fundamental measurement in physics, includes an  operation, 
known as concatenation, whereby two entities having the attribute t o  
be measured can be joined together to form a third entity that  also has 
the attribute. For  example, suppose a and b are objects, the attribute 
is mass, P is  the qualitative relation of "greater mass than" as  judged 
by, say, which pan of an equal-arm pan balance drops, and I is the 
qualitative relation of "equal mass ton a s  judged by no movement of 
the pan balance. Let aob denote the new object formed by placing a on 
top of b. Since this also has the attribute "mass," "on is  a concatenation 
operation. Examples of two of the empirical laws (axioms) involving 
o are : (i) (aob) I (boa), and (ii) if aPb, then for all c, (aoc) P (boc). 
The first (when coupled with other axioms of the system) has the inter- 
pretation that if object c exactly balances aob, i.e., " a  on top of b", then 
i t  will also balance boa, i.e., "b on top of a". The second means that  if 
the a-pan drops when a and b are placed on the balance (aPb), then 
the pan in which a is  placed on top of c (aoc) will drop if b is  placed on 
top of c (boc) in the other pan, i.e., (aoc) P (boc). Actually, of course, 
b is placed on top of a c' tha t  balances c. With a sufficient set of such 
axioms, all as  plausible a s  these and as capable of (approximate) empi- 
rical verification, i t  can be shown (Suppes, 1951; Suppes and Zinnes, 
1963; and earlier papers referenced in these two papers) tha t  there is an 
assignment 0 of positive numbers to objects such that, for all objects 
a and b, 

i. aPb if and only if 0 (a) > 0 (b), 
and 

ii. 0 (aob) = 0 (a) + 0 (b). 

This is  the representation theorem for extensive measurement. 
Since a n  ordering relation exists in any theory of fundamental measure- 
ment and since numerical order in the numerical system is  always 
chosen to reflect the qualitative one, Property i is  a part  of every 
representation theorem. Property ii - in  this case, the additivity of 
mass - is, however, unique to this system of extensive measurement. 

Let me outline the basic idea involved in the construction of 0. 
Suppose that a is any object and ai, i = l , 2 ,  ..., n, are objects that each 
balance a, then let nu denote an  object that  balances al oa2 o ... oa,. 



Choose arbitrarily some object e, and let 8 (e) = 1; e has, by definition, 
unit mass. Let a be any object. If for some integer n, a1 (ne), then 
assign 8 (a) = n (this must be the assignment in  order for Properties 
i and ii to hold). If such an exact balance does not obtain, then for any 
positive integer n i t  is plausible that  we should be able to find an  
integer m, dependent upon n, such that  [(m + 1) el P (nu) P (me), i.e., 
m + 1 e's together are heavier than nu's, which in turn  are heavier 
than me's. If so and if Properties i and ii are to hold, we must have 

from which it follows immediately that,  

Thus, to within a precision of l/n, 8 (a) equals m/n. This estimate can 
be made as precise as  we please by taking n as  large as  necessary. The 
proof amounts to showing that  the axioms permit the various steps 
suggested, that the limiting process hinted a t  really works, and that  the 
resulting function 8 satisfies Properties i and ii. 

Notice two things. Counting has played a crucial role in  the proof. 
And the basic nature of the measurement process involves determining 
how many duplicates of one object balance, or  approximately balance, 
how many of another. Both of these statements are true of all systems 
(of fundamental measurement with which I am familiar. 

The second major theorem of a theory of measurement tells us the 
relation between two different numerical assignments that each fulfill 
the conditions of the representation theorem; this is known as the 
uniqueness theorem. I n  extensive measurement, it is clear that  we 
could have chosen any object other than e and called its mass 1, so 
multiplication of 8 by a positive constant yields an equally good repre- 
sentation. I t  can also be shown that  any two representations that  
satisfy Properties i and ii are related by multiplication by a positive 
constant. This is summarized by saying that  mass - and indeed any 
<extensive quantity - is measured on a ratio scale. 

4. Conjoint Measurement 

Because extensive measurement is the only type of fundamental 
measurement that  has ever been proposed in physics, it was believed for 
a while that  the two notions are synonymous. The behavioral sciences 
have dispelled that  belief by constructing alternative schemes of fun- 
damental measurement. The most recent, and one of some generality, 



is known as conjoint measurement (Luce 8: Tukey, 1964); i t  rests on 
this idea. Suppose that  the alternatives tha t  have the attribute we 
wish to measure can be identified by a symbol of the form (a, x) ,  where 
n names one reproduceable component and x names another. For  ex- 
ample, (a, x )  might he a mass called a that  is moving a t  a velocity 
called x. Seither a nor x need be numerical measures; for example, we 
can identify and reproduce the velocity simply by knowing the point 
above a fixed location from which the object was released. Or (a, x )  might 
be a pui3e tone of intensity (1 and frequency x, where again all we need 
is a means to identify and reproduce intensities and frequencies, not 
riecessarily measures of them. Let P be an ordering of these entities 
according to the attribute of interest, and suppose that  it depends upon 
both components. I n  the first case. (a, x)  P (b, y) might mean that the 
moving object (a, x )  has greater momentum than ( b ,  y) under some well- 
specified experimental conditions. Axioms about P are stated that are 
sufficient to prove that  there are numerical functions 0 over the entities, 
4 over their first coordinate, and J, over their second coordinate such 
that  for all (0, x) and ( b ,  y), 

if (a. t) P (b, y )  if and only if 0 (a, x )  > 0 jb, y), 
a lid 

ii' 0 ( a , x ) = 4 ( ~ ) + J , ( x ) .  

These scales are unique up to positive linear transformations with the 
same slope, i.e., they are interval scales with related units. 

There is :I clear family resemblance between this theory and 
extensive measurement, and a t  the same time there are important diffe- 
rences. The most obvious difference, and the one that makes conjoint 
measurement of interest to the behavioral sciences, is the fact that no 
concatenation operation is postulated. I t s  role has been assumed by the 
apparently much more innocent postulate that  entities with the attri-  
bute to be measured have (at  least) two components, each of which 
affects the attribute and each of which can be independently manipu- 
lated by the experimenter. 

As with extensive measurement, the construction of the numerical 
measures involves both counting and the establishment of equivalences 
among the alternatives. To be specific, suppose a, a', b, and b' are from 
the first coordinate and that there are x and y from the second such 
that  both 

(0, a) 1 (b, y) and (a', x) 1 (b', y) 
hold. If so and if the conjoint representation exists, i t  follows readily 
from properties i' and ii' that 



i.e., the interval between a and b equals tha t  between a' and b' because 
both equal tha t  between x and y. I n  this way we can construct replicas 
of a given interval. If we choose Rome a to  be the zero of 4 and some 
larger a1 to  be the unit of d, then just as  in  extensive measureme~lt, we 
can ask how many (adjacent) replicas of the a. to  a,  interval a re  approx- 
imately equal t o  how many replicas of the a, to  b interval, and the 
limit of the ratio of these two integers is the value 4 ( b ~ .  The function 
J, is constructed similar.ly, and one then shows tha t  they satisfy Pro- 
perties if and ii'. 

I n  Luce and Tultey's theory, four axioms insure that  the various 
steps of tlle proof are possible; they are, roughly, the following : (a )  
that  the relation R (= P combined with I )  weakly orders the elements; 
(b) that R satisfies a simple cancellation property which amounts to  
dropping the same thing from both sides of certain pairs of inequalities ; 
(c) that  the elements of the two coordinates are  sufficiently finely graded 
(or, when they are discrete, appropriately spaced) and extensive that  
equivalences such as  (a, a) I (6, y) can be solved for the fourth element 
when the other three are fixed; and (d) that  an  Archimedean conditioii 
is met that  says, in effect, tha t  no finite difference, however large, is 
infinitely larger than any non-zero difference. If the desired represen- 
tation is to hold, Axioms (a )  and (b) are inescapably true, as also is 
Axiom (d) or  something very much like it, since subsets of numbers 
exhibit the corresponding property. Axiom (c) is by no means a neces- 
sary condition for the representation and, what is worse, i t  is quite 
restrictive because, for all  practical purposes, i t  requires both contin- 
uous coordinates and unbounded measures on each coordinate. HOK- 
ever, it has recently been shown (Luce, 1966) tha t  the same represen- 
tation can be established if Axiom (c) is weakened considerably, another 
simple necessary condition (monotonicity in each component) is added, 
and a sufficient number of elements are  postulated. The weakened form 
of Axiom ( c )  for the first component is : Let a, x, and y be given, then 
there exists a b such that  (a, a) I (b, y) provided that  there exist b', 
b" such that (b", y) R (a, x) R (b', y).  The statement for the second 
component is similar ( I ) .  

(1) Other results may be briefly mentioned. When each component has  only 
a finite number of elements, Scott (1964) and, independently, Tversky (1964) 
have completely eliminated Axiom (c) and have stated necessary and sufficient 
conditions for  the existence of a n  additive representation. Tversky (1967) extended 
these results to ?he infinite case and to non-additive, polynomial representations. 
The drawback with these results i s  that  the  apparently simple conditions are, in 
fact, a complex bundle of cancellation conditions. Thus, from a n  empirical point 
of view, interest continues in sufficient conditions that  involve only a few axioms. 
In  addition to the sufficient conditions mentioned in the  text, Debreu (1959, 1960) 
has  given a simple system that rests in part upon topological assumptions about 
the components. Adams & Fagot (1959) discussed necessarv conditions. 



Conjoint measurement is interesting not primarily because it de- 
monstrates that extensive measurement is a special type of fundamen- 
tal measurement or because it  provides physics with an alternative to 
extensive measurement, but rather because of its potential use in psy- 
chology and the other behavioral sciences. To my knowledge, no one 
has ever proposed a concatenation operation for any psychological attri-  
bute with the serious hope that the axioms of extensive measurement 
would be satisfied. By contrast, conjoint measurement can be tested in  
a variety of situations; all that is required is two variables that affect 
the attribute of interest. As yet, however, few attempts have been made 
to test it. Whether much can be done without further theoretical work 
is doubtful since, in general, subjects do not exhibit consistent responses, 
as is assumed in such an  algebraic theory (I). 

5. Simultaneous Extensive and Conjoint Measurement 

I11 physics, a t  least, and I believe in psychology to some extent, 
situations exist in which some variables can be measured both exten- 
sively and conjointly; when that is so, how do the two types of mea- 
sures relate ? For example, let an object of mass m and velocity tj have 
kinetic energy z(1. When m and v are measured in the usual (extensive) 
way, it  is well known that w = mc2/'2. Sow, suppose that we have a way 
of deciding qualitatively which of two moving objects has the greater 

Additional results about conjoint measurement that have or soon will appear 
are : Luce and Tukey (1964) showed that if formal "negative" entities are intro- 
duced into extensive measurement, then the resulting representation theorem is 
a consequence of the one for conjoint measurement; and Krantz (1964) showed 
roughly the converse, namely, that when the axioms of conjoint measurement 
are satisfied a formal concatenation operation can be introduced which satisfies 
the axioms of extensive measurement for positive and negative entities, and that 
representation provides a proof of the one for conjoint measurement. In addition, 
he developed a generalized symmetric theory in terms of three relations on a set 
of elements for which it is not necessary to identify in advance the two compo- 
nents. Other n-component generalizations can be found in Debreu (1960) and 
Luce (1966). Many of the two-component results are closely related to theorems 
in the algebraic theory of webs (AczB1, Pickert & Rad6, 1960; also see references 
given there). Finally, Roskies (1965) has generalized the Luce-Tukey result to a 
multiplicative rather than additive representation; in general, the former cannot 
be reduced to the latter by taking logarithms because the scale values may be 
negative as well as positive. 

(1) For example, Mc Laughlin & Luce (1965) (also see Luce & Suppes, 1965, 
for a summary of closely related empirical work on preferences) attempted to 
test the cancellation and transitivity axioms for preferences among bitter-sweet 
solutions, but the data forced them to evaluate probabilistic generalizations of 
both axioms. Marley (1965) has obtained some theoretical results about such 
probability models, but i t  is too early to draw any conclusions about these 
models. Tversky (1965) also has tested additivity within a gambling context. 



kinetic energy and that the resulting order R satisfies the axioms of 
conjoint measurement, which it  would according to classical physics, 
then taking exponentials of the additive representation theorem, we 
have measures @, 0, and Y such that @ (m, v) = O (m) Y (v), where @ 
is the conjoint measure of kinetic energy, cD is the contribution of mass 
to this measure of kinetic energy, and Y is the contribution of velocity 
to it. So the question is : how do O (m ,  v) and w, @ (m) and m, and 
Y (v) and 1; relate ? It is clear that if they are not closely related - in 
fact, substantially the same - we are faced with alternative measures 
of the same attribute a i ~ d  no obvious means to choose between them. 

At least for physics, the situation is fortunately fairly simple, but 
nonetheless interesting. In  addition to assuming that R satisfies the 
axioms of conjoint measurement and that mass and velocity are each 
extensive measures, let us suppose that the two schemes of measure- 
ment are related in the following way : there are non-zero integers p  
and y  such that for all positive integers i and j and for a11 m and v, 

(iPm, jqr) I ( jpm, iqr), (1) 
where iPnz denotes the element obtained by iP concatenations of the 
entity identified by m, etc. If so and if a certain technical assumption 
is made, then it  can be shown (I,uce, 196,5) that there are constants 
a, al az, arid p > 0 such that 

0 (111, r J = awb, 
cD ( I  = almPq, (2) 
Y ( I  = azcPp. 

In  this particula~q example, Eq. 1 holds only when p / y  = 2 and a = 
2alaz.  Of course, the general result is not restricted just to mass, 
velocity, and kinetic energy and their particular constants. The free 
exponent p arises simply from the fact tha t  the scales of additive con- 
joint measurement are interval scales with a common unit, so when 
the scales wre exponentially transformed they are unique up to a 
common, positive exponent. 

The conclusion is that the two theories of measurement are com- 
patible in a very simple way provided that  m and v are extensive mea- 
sures and them are integers p and q such that  

u3 = a mqt* (3) 

induces the ordering K of conjoint measurement. If this i s  true, then 
i t  is easily shown that  Eq. 1 is true - indeed, Eq. 1 can be interpreted 
a s  a qualitative form of the numerical law Eq. 3. Conversely, if 
both types of measurement theories apply, if Eq. 1 is  true, and if a 
technical assumption holds, then the multiplicative conjoint measures 
relate to the extensive ones as in Eq. 2, and the numerical law, Eq. 3: is 
satisfied. (Luce, 1965). 



This result, or ones closely related to  it, may prove of value in 
psychology. Suppose, for example, that  a subject orders - perhaps by 
pair comparisons or by magnitude estimation - the apparent weight 
of objects having mass nz and volume 6, and let us suppose tha t  both 
affect the judgment of weight. If the ordering by apparent weight salis- 
fies the axioms of conjoint measurement and if for some integers p and 
q Eq. 1 holds - to my knowledge, neither suppositiori has been tested 
- then the resulting subjective measure of weight must be the product 
of two components, each of which is  a power function of the extensive 
physical measure. The fact that  S. 5. Stevens (1961; and see references 
given there) and others have repeatedly found (approximate) pourer 
relations between (subjective) magnitude estimates and natural physi- 
cal measures tempts one to investigate these theoretical possibilities 
further. 

Note that  if a suitable set of axioms for conjoint measurement are  
sustained, but Eq. 1 is rejected, then different relations between the 
two methods of measurement must he considered; of course, these will 
lead to relations between the conjoint and extensive measures different 
from Eq. 2. 

6. Analysis of'variance and Conjoint Measurement 

The additive representation derived in the theory of coiljoint 
measurement is much like the model postulated in simple analysis of 
variance (AOV). It differs from the AOT' model in not having either 
a random error or an  interaction term, but in practice these differences 
are probably not very important. A common null hypothesis of AOV is 
that the interaction term is  zero, and so under that  hypothesis the 
only difference is the random error term. However, as  wils noted earlier, 
existing data strongly suggest that  purely algebraic measurement 
theories a re  inadequate anti will have to  be replaced by probabilistic 
generalizations. One of the simplest generalizations is to add a random 
error term, and such ;I generalization of conjoint measuremerit seems 
to be but a ltenaming of AOV. 

This is  not so, aiid i t  is important to  realize why. I n  conjoint 
measurement we construct an additive representation i f  one exists. 
In  AOV we accept as  given some niore-or-less arbitrary measure of the 
attribute of interest and we aslr whether, within the variability of the 
data, this measure is  additive over the experimentally independent 
variables, i.e., we test the null hypothesis that  for the given measure 
there is no interaction. We do not usually attempt to  transform the 



given measure to find the one that is most nearly additive. To the 
extent that  transformations are used in AOV, i t  is to t ry to satisfy the 
equi-normality (normal distributions and homogeiieity of variance) 
assumptions of the statistical test, not to find the "best" additive 
representation. There is absolutely no reason to expect that  the same 
transformation will fulfill both conditions. Thus, in my opinion, AOV 
simply does not deal with the often interesting problem of whether the 
interaction is removeable or inherent : when we conclude from an AOV 
that an interaction is "significant," we do not draw an absolute 
conclusion, but only one relative to the given measure. 

A trivial example illustrates the point. Suppose that, except for 

random error, w = x + y + 2 d@ and that  the random error satisfies 
the equi-noldmality assumption. If the data are not too variable, we will 

conclude from an AOV that  2 dq is a significant interaction term. 
Nevertheless, a t  the expense of destroying the equi-normality property 
of the random error, the interaction is completely removed by the square- 

root transformation since d~% = v% + dc 
Those who have recognized the relative character of AOV conclu- 

sions e r r  cautious to report an additive interaction only when their 
data completely preclude the possibility of an additive representation. 
The most commonly accepted evidence for an inherent interaction is 
data that are non-monotonic, i.e., that "cross" in the sense that, for 
example, there exist values a and b of the first component and x and y 
of the second such that  both (a, x)  P (b, x)  and (b, y) P (a, y) are observed. 
Tliere are more general qualitative conditions that  also exclude the 
possibility of an additive representation. One is a violation of the basic 
cancellation axiom of conjoint measurement, namely, if (a, x) P (f, 8 )  

and (f, r )  P (b, x), then (a, r) P (b, s), or, more generally, a violation of 
any member of Scott's i 1964) family of cancellation axioms. Of course, 
the difficulty with this observation is that random errors make it 
uncertain whether an observed violation is real or specious. We appear 
to need a systematic procedure, perhaps a computer program, to find 
that monotonic transformation of the original measure that, in some 
appropriate sense, "most nearly" approximates additivity, after which 
some statistical test should be used to evaluate the null hypothesis that  
there is no interaction (see Sec. 7).  

Before turning to the question of suitable tests, let me remark 
that some psychologists may attach too much scientific significance to  
additive independence and so to the existing AOV models. It is no less 
significant to discover that a measure zu can be expressed in terms of 
measures x and y as  u: = xy, w = 1/(x + y - ~ y ) ~ ,  etc., rather than 
as w = x + y. The dependence of w upon the independent variables 



x and y is neither less interesting nor more interactive in the first two 
examples than in the last. The additive model may be a useful starting 
point when we know very little, but its blind use, leading to the repeated 
conclusion of statistically significant (additive) interactions, could very 
well block us from gaining an understanding of which variables control 
a complex measure and of the mathematical formula for that  control. 
Fortunately, work has now begun on more general measurement models 
(Tverskp, 1967). 

7. Hypothesis Testing and Scales of Measurement 

Two views have been voiced in the psychological literature about 
the limitations that the uniqueness of our scales impose upon the 
statistical inferences we make. One is tha t  the classical parametric 
tests (which often involve an assumption of normal distributions) are 
appropriate on11 for strong - either interval or ratio - scales because 
relations between certain descriptive statistics (means, variances, etc.) 
remaill invariant only under the admissible transformations of these 
scales; and for weaker - ordinal - scales we should use weaker - 
non-parametric or, more precisely, distribution-free - tests. The other 
view is that  these strictures need not be taken seriouslx because of one 
or another combination of the following arguments : (a) tests concern 
distributions of numbera and so i t  does not matter what type of scale 
the numbers come from; (b)  n e  usually bring unstated intuitions to 
bear when choosing numerical assignments for ordinal scales which 
actually make them much more like interval or ratio scales than we 
can justify formally; and (c) parametric tests are really quite intensi- 
tive to considerable violations of the equi-normality assumptions. The 
relevant publications are : Anderson (1961)) Behan & Behan (1954)) 
Burke (1953)) Gaito (1959)) Lord (1953)) Senders (1953, 19581, Siege1 
(1956), and Stevens (1946, 1951, 1959). 

A third view, somewhat different from either of these, is that the 
use of a test is limited by the class of transformations under which the 
null hypothesis is unchanged. This class of transformations will have 
something to do with the admissible scale transformations if and 
only if the null hypothesis saps something about the scale. Two 
examples will illustrate what I mean. 

First, consider the familiar null hypothesis that  two samplea of 
observations come from the same distribution. This hypothesis says 
nothing a t  all about the scale used, and as is easily seen i t  is unchanged 
by any one-to-one (nominal) scale transformation, because a11 the 



transformation does is change the mathematical form of the single 
distribution that  is alleged to  account for the data. This invariance 
holds whether the scale is a ratio scale, such as weight, or a n  ordinal 
one, such a s  I Q .  Since any transformation is  acceptable, one that  
makes the distribution normal, if such exists, permits us to use the 
standard tests;  or, equivalently, the inverse transform generates an  
equivalent test for the original distribution. What  is not clear, and to  
niy knowledge has not been investigated, is the effect of such trans- 
formations on the power of the test. 

Secontl, consider a null hypothesis that  is directly concerned with 
tile scale. Suppose we have provided a criterion for a "best" approxi- 
mation to additivity in the sense of conjoint measurement and that,  for 
this class of scales, we wish to  test the null hypothesis that, within the 
variability of the data,  there is no interaction term. Since we are 
concerned with no interaction among the "most nearly" additive scales, 
we are  restricted to  those transformations tha t  keep us within that  
class of scales - in this case, linear transformations. I t  is of 110 interest 
a t  all to show that  for some transformation outside this class there is an 
interaction, which of course there will be even if the null hypothesis 
is true. Since we cannot expect the equi-normality assumptions of AOV 
generally to be met and since the nature of the hypothesis precludes a 
transformation of the scale so that  they are  met, we a re  forced either 
to use a non-parametric test o r  to show that  our data  are  within the 
region of insensitivity of a parametric* test. 

In  summary, then, I am suggesting that  if the hypothesis under test 
is not about a property of the scale, we are  free to  make any transfor- 
mation we please, in  particular, the one that  permits us to use a 
parametric test. If ,  however, the hypothesis is  about a property of the 
scale, such a s  additivity, then we are restricted to the admissible scale 
transformations and, in general, we use non-parametric tests for 
strong scales and parametric ones for weak scales. If so, why then has 
nearly the opposite been suggested : that  strong scales justify the use 
of strong statistical techniques and weak ones require weaker statistical 
tecliniques ? Tlie main reason, I believe, is the fact tha t  the t ruth of 
some statemeuts about particular statistics - e.g., that  the mean of one 
group of observations is less than the mean of another - is  preserved 
only when the class of admissible scale transformations is severely 
limited - in the case of comparisons of means, to  linear transfor- 
mations (inter*val scales) (I). I n  a rough sense, the weaker the scale type, 

(1) For a detailed discussion of the invariance and meaningfulness of state- 
ments about particular statistics under admissible scale transformations, see 
Adams. Fagot & Robinson (1965). Stevens (1946. 1951). and Suppes & Zinnes (1963). 



the wealrer must be a statement about the relation between statistics in 
order for i t  to remain true under admissible scale transformations. " In  
general, tlie more unrestricted the permissible transformations, the 
more restricted the statistics." (Stevens, 1959, 1). 2 7 ) .  By aiialogy, 
I believe, some have concluded that the weaker the scale txpe, the 
xveaker must be the assumptions of the statistical test used. This, I 
submit, is the wrong analogy; it is the invariance of the truth of the 
null liypothesis that  limits the acceptable transformations, and this 
limitatioii in turn controls our ability to fulfill the assumptions of paisa- 
metric statistical tests. If the null hypothesis concerns the scale, then 
and only then do the admissible scale transformation affect the test 
we choose. 
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DISCUSSION 

ROUANET. - Pourriez-vous nous donner quelques dktails sur les c hypo- 
thkses techniques, que vous avez mentionnkes au moins deux fois ? 

LUCE. - YOU mean the assumptions underlying conjoint measurement ? 
In the presentation that Tukey and I gave, (Luce and Tukey, 1964), there 
are four axioms. Let R be a relation on A, x A,. The first axioni is that 
R is a weak ordering of A, x A,. The second axiom is the following 
cancellation property : if (a, x) R (f, s) and (f, r) R (b, x), then (a, r) R (b, s). 
The third axiom is known as the solution-of-equations property : given 
a and b in A, and x in A,, there exists some y in A, such that (a, x) I (b, y). 
And the fourth, which I will not try to state exactly, is an Archimedean 
condition. It requires a definition before one can state it, but it is a fairly 
standard type of axiom. Now, the thing closest to continuity - and it is 
not strictly a continuity assumption - is the solution-of-equations axiom. 
The drawback of that axiom, as stated in our paper, is that it is postulated 
to hold without restriction, and this means that the scales have to be 
unbounded. In general, this is not likely to be true for psychological 
variables. As I indicated earlier, I have recently (Luce, 1966) weakened 
this axiom considerably at the expense of having to add, mainly, one other 
axiom, namely, that for all x and y, (a, x) R (b, y) holds if, and only if, 
(a, y) R (b, y) holds. In the original system, we were able to deduce this 
property; however, once the unrestricted solution of equations is dropped, 
it can no longer be deduced and so it has to be added as a separate axiom. 
In addition, there is another axiom that asserts the existence of a sufficient 
number of elements, but I don't think it is worth stating it explicitly. 

AUDLEY. -It is unclear to me how wide the range of transformations 
on the null hypothesis could be. In order to carry out parametric statistics 
one must know that the populations under examination have certain 
characteristics, and it is not often that one has enough information from the 
sample to know what kind of transformation should be employed to 
achieve, say, approximate normality. 

LUCE. - I certainly agree that the problem of deciding exactly which 
transformation should be used is quite difficult; I have not addressed 
myself to that question. Rather I have considered whether or  not it is 
acceptable to make arbitrary transformations when you are testing the 
null hypothesis that the two samples came from the same distribution. 
Stevens has argued that there are limitations which are based on the scale 
type of the measurements, and I am arguing, not so : that if the null 
hypothesis says that the two samples came from the same distribution, one 
may take any transformation one wishes. Then if we could solve the problem 
of which transformation converts the given distribution into a normal one, 
then I would think that we would want to use it. But I did not say how 
to find this transformation. All I said is that we are free to make the 
tra~isformations on the data because, so far as I can see, all we are alleging 
is that the two samples came from a common distribution, and that will 
remain true no matter how we transform the measure. On the other hand, 



if a null hypothesis concerns the nature of the scale, then I think we are 
limited in the admissible transforn~ations. It seems to me that an analysis 
of variance differs significantly from testing a null hypothesis such as the 
one just discussed because it is concerned with the nature of the scale; 
namely, whether the scale exhibits additivity over the coordinates. I think 
that these are two quite different classes of null hypotheses, and the effects 
of the scale transforlnations are totally different in the two situations. 
I feel that this has been fairly thoroughly muddled in the literature. But as 
to which transformation to use in order to justify the use of a parametric 
test is a problem beyond my competence; it is a statistical question that  
I am not prepared to deal with here and probably not anywhere. 

AUDLEY. -- May I pursue the point a little more; I am not sure it is 
just a statistical matter. In order to be able to make a statistical inferenc? 
about the population from sample information, it seenis to me that any 
transforltlations used will probably have to be of a kind that preserve 
some properties of the scale type. 

LUCE. - If YOU a re  correct in that  supposition, then I would agree that  
the scale type will make a difference. However, I think that it is  doubtful 
that this is a generally true statement. I can imagine that if you had an 
adequate theory for the situation wi th  which you are  dealing, then the 
theory might very well tell you what  transformations you should use and 
so I can see that the situation you describe might arise. But I can also 
imagine situations where the scale type simply would not matter. You 
would like to use your data to infer what  transformation produces approx- 
imate normality. A series of approximations would be involved here, 
which, no doubt, will conlplicate considerably the statistical inference 
problem. 

KLIX. - I t  seems to me that we have here a very meaningful way for 
getting an applied form of measure theory, adapted to problems relevant 
in psychological research. But in connection with your explanation I 
become aware of several difficulties. One has been mentioned already. 1 
mean the difficulties which arise with statistical features of the outcomes 
in psycliological nieasurement. I would like to mention one difficulty in 
this connection : i t  is quite certain that the two parameters do  not have 
the same distribution. On the contrary, examples could be given where the 
probability distribution over the conjoint parameters a re  quite different. 

And my second problem : do you intend to unfold the two-component 
condition to three or  more componenls ? There are  many examples in 
psychological research of inferences caused by more than two conditions. 
For instance, in perceptual theory the apparent velocity (as a comparable 
and therewith m e a s ~ ~ r a b l e  unit) is caused by more than three conditions : 
(1) the real or  physical speed, (2) the intensity of the stimulus, (3) its phy- 
sical distance, (4)  the neighbonrhood, and others. It seems to me that diffi- 
culties arise if your conjoint approach is applied to more than two condi- 
tions. There exists no sy~ilmetry in the weights of the conlponents, their 
effects on the inference are not homogeneous and they are interchangeable 
in a limited, condition-dependent degree. Do you believe these difficulties 
are to be mastered ? 

I,UCE. - I certainly agree that the statistical problem seems, right now, 
to be the most important next step to be pursued. There are, indeed, situa- 
tions for which the distributions on the two coordinates are quite different. 
For example, loudness depends both on intensity and frequency, but the 



dependence is very, very different on the two coordinates, and the sta- 
tistical features are therefore very different. About the second point - 
the possibility of more than two coordinates - it is fairly straight-forward 
to generalize the additive theory to any finite number of coordinates. 
Krantz (1964) has given one such generalization, and I have given a 
somewhat weaker generalization (Luce, 1966), so on this point we do not 
disagree. There is really no serious problem in generalizing additivity to 
n-coordinates. However, when additivity is abandoned - when some other 
functional relationship is assumed - matters get a bit nlore complicated. 
Tversky (1967) has given very abstract, necessary and sufficient condi- 
tions for polynomial representations on a finite number of coordinates. The 
translation of these conditions into testable hypotheses appears to be quite 
difficult. The conditions are stated quite abstractly and really involve an 
~nfinite set of conditions although they are written so that there appear to 
be only two axioms. But when you disentangle them it turns out that one 
is really an infinity of axioms. From the point of view of the experimen- 
talist, it is not very clear what to do with axioms of this sort. The reason 
that Tukey and I and others have been concerned with sufficient conditions, 
rather than necessary and sufficient conditions, has been to find systems 
that are potentially testable in the laboratory. Basically, we have shown 
that only one or  two cancellation properties are needed provided that 
some sort of solution-of-ecluations condition is satisfied. 

There is no question - and let ilie not be misinterpreted on this 
point - that there are any nurnber of situations to which this type of 
theory is not applicable. The hope is that there are a few to which it is 
applicable. But at the moment I do not believe that anybody knows 
whether such situations actually exist in psychology. I think that we have 
to take the point of view that this additive theory is, perhaps, the simplest 
of a set of possible measurement theories - the simplest one that might 
conceivably work - and now the problem is to go into the laboratory, to 
try various likely empirical candidates, and to see if, in fact, it works 
anywhere. It may very well not work anywhere. At the moment no one is 
doing much experimental research on the problem because the statistical 
problems have not been resolved. I know of no experiment proposed to 
test these theories in which we would not anticipate inconsistent data from 
the subjects. The attempts that I have made, both on loudness and on taste, 
have produced probabilistic data. Of course, it may just be that we don't 
know how to do the experiments properly or it may be inherent in the 
subjects. To be sure, physicists have had the same difficulty, and they have 
tended to handle it in a fairly casual manner. They simply assume that 
there is a little randoni error scattered around in snch a way that by 
making enough observations and taking means everything is alright. They 
seem to get along pretty well doing this; whether we can manage the same 
thing is not so clear. 

SUPPES. - It seems to me that there are some genuine differences 
between the interest in measurement in psychology and in physics. The 
physicists working in many domains, at least experimentally, work under 
the hypothesis that it is natural to increase the accuracy of the measure- 
ments. Unless we go on to far more mechanical or  atomic domains, where 
this is a general methodological postulate, it is not a postulate of interest 
for much psycliological research. T\'l~en you are working with the human 
observer you aren't really concerned necessarily, it seems to me, in many 



investigations involving the measurement of human skills, attitudes, jud- 
gements, etc. to have a theory that leads to the increasing accuracy of the 
measurements; and this makes the considerations rather different in psy- 
chology than in physics. 

I,UCE. - It is not too often that Dr. Suppes and I differ on questions of 
measurement - we have talked a lot about them - but I guess I disagree 
with him to some extent here. It does not seem a priori clear to me that 
we cannot increase the precision of our measurements in psychology. We 
take for granted certain experimental procedures which are, by now, 
classical, and we live with them, but these procedures may produce certain 
inaccuracies. Whether we can rid ourselves of these inaccuracies can not 
really be prejudged. Let me cite an example in a nearby area - not actually 
in measurement, as such. A graduate student and I have been doing some 
work on reaction time, and we keep modifying our physical measurements 
of reaction time in an attempt to find out how much of the total variability 
is contributed by the subject and how much by our apparatus. The latter 
contribution is not inconsiderable, and it is fairly tricky to eliminate it 
from the apparatus. We are using what is considered relatively good equip- 
ment; nevertheless, it looks as though something of the order of 50 % of 
the variability we observe is due to the equipment and not to the subject. 
Don't hold me to that figure; we are still in the process of trying to find 
out just how much is due to the apparatus. When, as we can easily achieve 
with simple reaction times, 60 % of the observations fall within 20 ms. 
band, then a 5 ms. variation somewhere in the apparatus constitutes a 
significant part of the variability. One cannot but wonder about the degree 
to which it will be possible in other areas to reduce variability by increa- 
sed care of experimentation. In the area of measurement, I wonder if we 
were to modify our procedures appreciably, could we get rid of more and 
more of the variability. I would hate to prejudge the answer. Some of the 
probability models we build may not be models of the behavior of human 
beings but of the inadequacies of our experimental procedure and appa- 
ratus. This possibility frequently haunts me as we construct ever more 
probability models. 

SUPPES. - It's fun to pursue this for a moment. I accept certainly 
what you say about reaction times, but it seems to me that for many areas 
of behavior one can certainly make a case, let's say, that the behavior of 
the human being is rough and ready and it is not at all clear that we want, or 
are interested in, a theory of measurement of that behavior that has the 
same kind of refinements as in physics. For example, the kind of skills 
involved in walking up stairs, hitting a tennis ball, making a decision in 
terms of maximizing some property. I mean this is at least one way of 
looking at much behavior. There is a kind of robustness and at the same 
time a kind of crudity in the measurements used by the organism in taking 
a decision or making a response. 

1,uc~. - I agree with that. 
ROUANET. - A propos du test de I'additivitC, vous recommandez, si je 

comprends bien, pour tester l'interaction, d'utiliser un test non-paramC- 
trique une fois que l'echelle a CtC ajustee le mieux possible. Avez-vous des 
recommandations plus precises et suggerez-vous des tests non-parame- 
triques particuliers ? 

IACE. - NO. Not being a statistician I have some difficulty in answe- 
ring this, but my impression is that we do not have, at  the moment, suitable 



test procedures to analyze this problem. What I am indicating, essentially, 
is a problem that I think needs to be solved, but I am not proposing any 
explicit solution. What concerns me is that statisticians seem to act as if, 
and many psychologists seem to agree with them that, the analysis of 
variance, as we now know it, solves the problem. And I am saying, no, the 
real problem of finding additive measures must be dealt with somewhat 
differently, but I do not have any explicit proposals as to how it should 
be done. There are two aspects to this problem and I do not have explicit 
proposals for either part. First, how does one find the "best" additive 
representation ? Second, given the solution to that, how does one do the 
statistical test without violating the additivity requirement ? 

ROUANET. - Je  songeais aux tests non-parametriques, du genre a: tests 
de permutation )> de Fisher, qui, dans bien des cas, donnent des resultats 
voisins de ceux obtenus par le F classique de l'analyse de variance, tout 
en se passant de l'hgpothkse de I'CquinormalitC. D'autre part, ces tests ont 
le merite d'ktre relatifs a une echelle d'intervalles, et non a une Cchelle de 
type inferieur, ainsi ils sont aussi puissants que les tests parametriques 
habituels. 

LUCE. - I think this is the familiar question : can you get away with 
a parametric test when the assumptions of that test a re  not completely 
fulfilled ? You know as much about this as I do. There is a certain amount 
of semi-empirical literature about it to the effect that one can get away 
with it provided that the assumptions are not too badly violated. Of course, 
all these considerations will apply here : we will, in many situations, be 
able to use a parametric test without serious error. Nevertheless, in some 
situations this may not be true, and one would like to have a non-parame- 
tric test available. I think, though, the important point is not this old 
question about when you can use parametric tests, but rather the need for 
transformations to get the best additive measure. Psychologists continually 
use the analysis of variance to conclude the existence of interaction, and 
we - in particular, a group such as this - have got to fight the common 
misinterpretations. I don't think most psychologists really know what they 
are doing when they test for interaction in analysis of variance; they are 
not concluding a significant interaction, as they believe, but rather a signi- 
ficant interaction relative to the particular, often arbitrary, measure that 
they have used. There may be no interaction at all in a different monotonic 
measure. 

SIMON. - I wonder whether you don't need to add a third class of 
difficulties to the difficulties of statistical testing that have been mentio- 
ned here. The leading statistical theorists, I believe, are quite dissatisfied 
with the theory of testing extreme hypotheses. By an extreme hypothesis 
I mean an hypothesis in which the null hypothesis is a very specific theory 
or model, and the alternative is its denial. Now the hypotheses you are 
testing in your scaling work, as well as most of the models that are des- 
cribed in other papers in this conference, are extreme hypotheses in this 
sense. 

The inapplicability of standard hypothesis testing methods to extreme 
hypotheses is well known. Any of the classical physical theories which are 
well established as very good first approximations to the world - the law 
of falling bodies, for example -- will be rejected by tests of extreme hypo- 
theses if the data are good enough and the samples large enough. On the 



other hand, when you use non-parametric tests here, you are guaranteeing 
the acceptance of your hypotheses by using tests of extremely low power. 

LUCE. - Certainly there is a danger of this, and I think all the com- 
ments you have made are quite relevant. We are just going to have to be 
very careful not to accept a null hypothesis artificially through the use of 
weak tests. I do not want to get into a position of arguing against what I 
think is correct, such as the point just made by Dr. Simon. The point that 
I have been trying to get at had to do with the interlock between scales of 
measurement and the use of tests, about which there has been a moderate 
amount of discussion in the psychological literature and a lot of heated 
debate. The position I am taking is that neither side of the debate as it 
now exists in the literature is correct, that there is actually a third position 
which is that you are not limited in applying transformations provided 
that you are not making a test about the nature of the scale. But if you 
are making such a test about the scale, then you may be limited in prin- 
ciple subject, however, to all the caveats about the use of parametric 
tests when the assunlptions are not strictly satisfied and about being careful 
not to accept the null hypothesis because too few data were collected for 
the strength of the test. I agree, but the point I was trying to make was 
a little different than that. I did not want to get into the whole problem of 
doing statistical tests; I am certainly not the person to discuss that. 

AUDLEY. - Might we explore a little the relation between measure- 
ment and theory in general ? In the examples of measurement you have 
discussed, we are dealing with a fairly closed system in which the theore- 
tical structure is well known. The measurement scheme is then worked out 
within this structure. In many psychological situations the selection of 
variables for consideration may be more arbitrary. In your example of 
apparent weight, just two particular variables were selected. But one feels 
that these are only a sample of all the variables involved in the pheno- 
menon. What can be done about building up systems of measurement when 
we do not know all the major variables entering into a situation ? 

I,UCE. - My general impression is that there is very little a formal 
theory can do to help here. The discov.ery of relevant variables and getting 
data about their interaction with one another does not seem to be some- 
thing you can reduce to a routine. This is the classic problem of the factor 
analysis : can't we be rid of the difficult and grubby problem of finding 
out how the world is put together and do it all formally ? Well, from my 
point of view, factor analysis has pretty much run its course in psychology, 
although, unfortunately, I see signs of it moving into the physical sciences. 
Somewhere I recently read a geologist who recommended the use of factor 
analysis in geology; I can only feel sorry fo r  his discipline if he is heeded. 
I just don't think that this kind of pure formalism provides any hope of 
unlocking the variables. To do that requires whatever it is that we, as 
scientists, provide : insight and creativity of various sorts. All that a mea- 
surement theory of the type I have been talking about can do is to provide 
a possible framework in which the data might fit; and if one finds that 
some variables do in fact fit it, then we will begin to be in a position to see 
which variables are fundamental. If nothing fits it, then it is one of those 
trys that didn't work. But I don't think there is any nice, sweet avenue to 
the discovery of the relevant variables. Certainly, no purely formal pro- 
cedures are going to help. 



RESTLE. - I don't quite understand the relation between the two 
variables a and x that you describe. I take it they must be different, yet 
both be attributes of the same object, the object being measured. Further- 
more, we are abstracting from these two attributes some common property. 
I have done some work on judgment of complex objects, and it is known 
that one cannot compare the brightness of a blue and yellow light as accu- 
rately as two blue lights. To apply conjoint measurement you must have 
complex objects, and I wonder what is the psychological significance of 
the complexity of objects in conjoint measurement ? 

LUCE. - I think we must be careful in the choice of stimuli to which 
we attempt to apply conjoint measurement. I know the problem you are 
driving at. It appears, however, that for certain judgmental variables more 
than one physical variable affects the psychological measure. An example 
is the apparent weight of objects, which, on the one hand, seems to be a 
reasonably unitary psychological notion and, on the other, can be mani- 
pulated to some degree both by the mass of the object and by its volume 
or, equivalently, its density. Another example is the loudness of pure tones 
which depends both on intensity and frequency, albeit only slightly on 
frequency. It is in situations of this sort that one might hope that the 
axioms of some conjoint measurement theory would be satisfied and so the 
resulting representation could be used. If you attempt to apply these theo- 
ries to truly complex stimuli, my guess is that you are asking for trouble 
at this stage of the game. Rather, I am inclined to try to apply them to 
what appear to be psychologically unitary variables that happen to depend 
on more than one physical attribute. 

RESTLE. - The contrasting approach would be to take up your weight- 
lifting example as the study of an illusion, and your problem on loudness 
of tones as one of comparing the loudness of two tones having different 
pitch. I suggest that the conjoint measurement theory may not take suffi- 
cient cognizance of the perceptual situations, hence may be irrelevant to 
understanding such experiments. I do not question the formal importance 
and clarity of the development as you do it. 

LUCE. - YOU may be right. I do not know how to decide such ques- 
tions in advance, and it may turn out in the end that the only interest in 
this kind of formal development is philosophical. I think that it is of inte- 
rest for, at least, the philosophy of physics, but it may not go beyond that. 
I am perfectly prepared to see that happen, although I rather hope that it 
doesn't. 


